FEATURES
- Low zener noise specified
- Low zener impedance
- Low leakage current
- Hermetically sealed glass package

MECHANICAL CHARACTERISTICS
- CASE: Hermetically sealed glass case. DO-35.
- LEAD MATERIAL: Tinned copper clad steel.
- MARKING: Body painted, alphanumeric.
- POLARITY: Banded end is cathode.
- THERMAL RESISTANCE: 200°C/W (Typical) junction to lead at 0.375 – inches from body. Metallurgically bonded DO – 35’s exhibit less than 100°C/Watt at zero distance from body.

MAXIMUM RATINGS
Operating temperature: –65°C to 200°C; Storage temperature: –65°C to +200°C

ELECTRICAL CHARACTERISTICS
(T_a = 25°C unless otherwise noted. Based on dc measurements at thermal equilibrium V_Z = 1.11 MAX @ I_{2T} = 200 mA for all types)

<table>
<thead>
<tr>
<th>JEDEC TYPE NO.</th>
<th>NOMINAL ZENER VOLTAGE</th>
<th>V<sub>2T</sub> & I<sub>2T</sub> VOLTS (Note 2)</th>
<th>I<sub>Z</sub>, mADC</th>
<th>I<sub>R</sub>, µADC (Note 4)</th>
<th>MAX REVERSE LEAKAGE CURRENT</th>
<th>B-C-D SUFFIX</th>
<th>MAXIMUM DC ZENER CURRENT</th>
<th>B-C-D SUFFIX</th>
<th>MAXIMUM SUSTAINED CURRENT</th>
<th>B-C-D SUPPLY RATING</th>
<th>REGULATION FACTOR</th>
<th>V<sub>Z</sub> VOLTS</th>
<th>V<sub>2</sub> CURRENT</th>
<th>V<sub>2</sub> VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N5518</td>
<td>3.3</td>
<td>20</td>
<td>26</td>
<td>5.0</td>
<td>0.90</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>68</td>
<td>0.5</td>
<td>0.90</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1N5519</td>
<td>3.6</td>
<td>20</td>
<td>24</td>
<td>3.0</td>
<td>0.90</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>66</td>
<td>0.5</td>
<td>0.90</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1N5520</td>
<td>3.9</td>
<td>20</td>
<td>22</td>
<td>1.0</td>
<td>0.90</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>61</td>
<td>0.5</td>
<td>0.90</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1N5521</td>
<td>4.3</td>
<td>20</td>
<td>18</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>56</td>
<td>0.5</td>
<td>0.75</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1N5522</td>
<td>4.7</td>
<td>10</td>
<td>22</td>
<td>2.0</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>51</td>
<td>0.5</td>
<td>0.60</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION
The JEDEC type numbers shown are ±20% with guaranteed limits for only V₂, I₂, and V_Z. Units with A suffix are ±10% with guaranteed limits for only V₂, I₂, and V_Z. Units with guaranteed limits for all six parameters are indicated by a B suffix for ±5.0% units, C suffix for ±2.0% and D suffix for ±1.0%.

NOTE 2 - ZENER (V_Z) VOLTAGE MEASUREMENT
Nominal zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of 25°C.

NOTE 3 - ZENER IMPEDANCE (Z_Z) DERIVATION
The zener impedance is derived from the 60 Hz ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{2T}) is superimposed on I_{2T}.

NOTE 4 - REVERSE LEAKAGE CURRENT (I_R)
Reverse leakage currents are guaranteed and are measured at V_R as shown on the table.

NOTE 5 - MAXIMUM REGULATOR CURRENT (I_{2M})
The maximum current shown is based on the maximum voltage of a 5.0% type unit, therefore, it applies only to the B suffix device. The actual I_{2M} for any device may not exceed the value of 400 milliwatts divided by the actual V₂ of the device.

NOTE 6 - MAXIMUM REGULATION FACTOR (∆V_Z)
∆V_Z is the maximum difference between V_Z at I_{2T} and V_Z at I₂ measured with the device junction in thermal equilibrium.
RATINGS AND CHARACTERISTIC CURVES (1N5518 THRU 1N5546)

FIGURE 1 - POWER TEMPERATURE DERATING CURVE

FIGURE 2 - ZENER DIODE CHARACTERISTICS AND SYMBOL IDENTIFICATION

FIGURE 3 - CAPACITANCE VS. VZ CURVE