DESCRIPTION

The QED22X is an 880nm AlGaAs LED encapsulated in clear, purple tinted, plastic T-1 3/4 package.

FEATURES

- λ = 880 nm
- Chip material = AlGaAs
- Package type: T-1 3/4 (5mm lens diameter)
- Matched Photosensor: QSD122/123/124
- Medium Wide Emission Angle, 40°
- High Output Power
- Package material and color: Clear, purple tinted, plastic
ABSOLUTE MAXIMUM RATINGS \((T_A = 25\degree C \text{ unless otherwise specified})\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>(T_{OPR})</td>
<td>-40 to +100</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{STG})</td>
<td>-40 to +100</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Soldering Temperature (Iron) ((2,3,4))</td>
<td>(T_{SOL-I})</td>
<td>240 for 5 sec</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Soldering Temperature (Flow) ((2,3))</td>
<td>(T_{SOL-F})</td>
<td>260 for 10 sec</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Continuous Forward Current</td>
<td>(I_F)</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>(V_R)</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation ((1))</td>
<td>(P_D)</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Forward Current ((5))</td>
<td>(I_{F(Peak)})</td>
<td>1.5</td>
<td>A</td>
</tr>
</tbody>
</table>

ELECTRICAL / OPTICAL CHARACTERISTICS \((T_A = 25\degree C)\)

TEST CONDITIONS

- \(I_F = 100\ mA\)
- \(V_R = 5\ V\)
- \(I_F = 100\ mA, tp = 20\ ms\)
- \(I_F = 100\ mA, tp = 20\ ms\)
- \(I_F = 100\ mA, tp = 20\ ms\)
- \(I_F = 100\ mA, tp = 20\ ms\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Emission Wavelength</td>
<td>(\lambda_{PE})</td>
<td>—</td>
<td>880</td>
<td>—</td>
<td>nm</td>
</tr>
<tr>
<td>Emission Angle</td>
<td>(\Theta)</td>
<td>—</td>
<td>±20</td>
<td>—</td>
<td>Deg.</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>(V_F)</td>
<td>—</td>
<td>—</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>(I_R)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Radiant Intensity QED221</td>
<td>(I_E)</td>
<td>10</td>
<td>—</td>
<td>20</td>
<td>mW/sr</td>
</tr>
<tr>
<td>Radiant Intensity QED222</td>
<td>(I_E)</td>
<td>16</td>
<td>—</td>
<td>32</td>
<td>mW/sr</td>
</tr>
<tr>
<td>Radiant Intensity QED223</td>
<td>(I_E)</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>mW/sr</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_r)</td>
<td>—</td>
<td>800</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>(t_f)</td>
<td>—</td>
<td>800</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Derate power dissipation linearly 2.67 mW/\(\degree C\) above 25\degree C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron \(1/16\)" (1.6mm) minimum from housing.
5. Pulse conditions; \(tp = 100\ \mu S, T = 10\ ms\).
PLASTIC INFRARED LIGHT EMITTING DIODE

QED221 QED222 QED223

Fig. 1 Normalized Radiant Intensity vs. Input Current

Normalized to:
IF = 100 mA, TA = 25°C
Pulse Width = 100 µs

IF - INPUT CURRENT (mA)

Normalized Radiant Intensity

Fig. 2 Coupling Characteristics of QED22X with QSD12X

Normalized to:
Pulse Width = 100 µs
Duty Cycle = 0.1%
VCC = 5 V
Rl = 100 Ω
TA = 25°C

IF = 100 mA
IF = 20 mA

LENSES TIP SEPARATION (INCHES)

Fig. 3 Forward Voltage vs. Temperature

Normalized Radiant Intensity

Fig. 4 Normalized Radiant Intensity vs. Wavelength

IF = 10 mA
IF = 100 mA
IF = 20 mA
IF = 50 mA

Pulse Width = 100 µs
Duty Cycle = 0.1%

V F - FORWARD VOLTAGE (V)

T A - TEMPERATURE (°C)

Fig. 5 Forward Current vs. Forward Voltage

IF - FORWARD CURRENT (mA)

V F - FORWARD VOLTAGE (V)

Fig. 6 Radiation Pattern

IF = 10 mA
IF = 100 mA
IF = 20 mA
IF = 50 mA

Radiation Pattern
PLASTIC INFRARED LIGHT EMISSING DIODE

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.