Features

- Guaranteed 200pA max. input offset current
- Guaranteed 2nA max. input bias current
- Guaranteed 600μA max. supply current
- Guaranteed 0.5mV max. offset voltage
- Guaranteed 5μV/°C max. drift
- Wide supply voltage range: ±2V to ±18V

Applications

- Integrators
- Transducer amplifiers
- Analog memories
- Light meters

Description

The LM108 series of precision operational amplifiers are particularly well-suited for high source impedance applications requiring low offset and bias currents as well as low power dissipation. Unlike FET input amplifiers, the offset and bias currents of the LM108 do not change significantly with temperature variations. Advanced design, processing and testing techniques make Linear’s LM108 a superior choice over previous devices.

A photodiode sensor application is shown below. For applications requiring higher performance, see the LT1008, and LT1012.

Amplifier For Photodiode Sensor

![Amplifier Diagram]

Input Currents

![Input Current Graph]
LM108A/LM308A
LM108/LM308

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
- LM308A/LM308: ± 18V

Differential Input Current (Note 1): ± 10mA

Input Voltage (Note 2): ± 15V

Output Short Circuit Duration: Indefinite

Operating Temperature Range
- LM308A/LM308: 0°C to 70°C

Storage Temperature Range
- All Devices: –65°C to 150°C

Lead Temperature (Soldering, 10 sec.): 300°C

PACKAGE/ORDER INFORMATION

ORDER PART NO.
- LM108AH
- LM108H
- LM308AH
- LM308H
- LM308AN8
- LM308N8

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LM108A</th>
<th>LM308</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS</td>
<td>Input Offset Voltage</td>
<td>TA = 25°C</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ΔVOS/ΔTemp</td>
<td>Average Temperature Coefficient of Input Offset Voltage</td>
<td></td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>15</td>
</tr>
<tr>
<td>Ios</td>
<td>Input Offset Current</td>
<td>TA = 25°C</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>ΔIos/ΔTemp</td>
<td>Average Temperature Coefficient of Input Offset Current</td>
<td></td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Ibs</td>
<td>Input Bias Current</td>
<td>TA = 25°C</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>AVOL</td>
<td>Large Signal Voltage Gain</td>
<td>TA = 25°C, V5 = ±15V,</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOUT = ± 10V, Rl > 10kΩ</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td></td>
<td>96</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td></td>
<td>96</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>Vout</td>
<td>Output Voltage Range</td>
<td></td>
<td>±13.5</td>
<td>±13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±13</td>
<td>±14</td>
</tr>
<tr>
<td>RIN</td>
<td>Input Resistance</td>
<td>TA = 25°C (Note 3)</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Is</td>
<td>Supply Current</td>
<td>TA = 25°C</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 125°C</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Lincoln Technology
ELECTRICAL CHARACTERISTICS

$\pm 5V \leq V_{i} \leq 15V$ and $0^\circ C \leq T_{A} \leq 70^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>LM308A</th>
<th>LM308</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{os}</td>
<td>Input Offset Voltage</td>
<td>$T_{A} = 25^\circ C$</td>
<td>0.3</td>
<td>2.0</td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{os}</td>
<td>Average Temperature Coefficient of Offset Voltage</td>
<td>$T_{A} = 25^\circ C$</td>
<td>5.0</td>
<td>6.0</td>
<td>$\mu V/^\circ C$</td>
</tr>
<tr>
<td>I_{os}</td>
<td>Input Offset Current</td>
<td>$T_{A} = 25^\circ C$</td>
<td>10</td>
<td>30</td>
<td>nA</td>
</tr>
<tr>
<td>ΔI_{os}</td>
<td>Average Temperature Coefficient of Offset Current</td>
<td>$T_{A} = 25^\circ C$</td>
<td>2.0</td>
<td>2.0</td>
<td>pA/$^\circ C$</td>
</tr>
<tr>
<td>I_{b}</td>
<td>Input Bias Current</td>
<td>$T_{A} = 25^\circ C$</td>
<td>1.5</td>
<td>1.5</td>
<td>nA</td>
</tr>
<tr>
<td>A_{vol}</td>
<td>Large Signal Voltage Gain</td>
<td>$V_{s} = \pm 15V$, $V_{out} = \pm 10V$, $R_{i} > 10k\Omega$</td>
<td>80</td>
<td>25</td>
<td>V/mV</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>$T_{A} = 25^\circ C$</td>
<td>96</td>
<td>96</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{s} = \pm 15V$</td>
<td>110</td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Output Voltage Swing</td>
<td>$V_{s} = \pm 15V$, $R_{i} = 10k\Omega$</td>
<td>14</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>R_{in}</td>
<td>Input Resistance</td>
<td>$T_{A} = 25^\circ C$ (Note 3)</td>
<td>13</td>
<td>13</td>
<td>M\Omega</td>
</tr>
<tr>
<td>I_{s}</td>
<td>Supply Current</td>
<td>$T_{A} = 25^\circ C$</td>
<td>0.3</td>
<td>0.3</td>
<td>mA</td>
</tr>
</tbody>
</table>

The \bullet denotes the specifications which apply over the full operating temperature range.

For MIL-STD components, please refer to LTC 883 data sheet for test listing and parameters.

Note 1: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless current limiting resistance is used.

Note 2: For supply voltages less than $\pm 15V$, the maximum input voltage is equal to the supply voltage.

Note 3: Guaranteed by design.

TYPICAL APPLICATIONS

Standard Compensation Circuit

Alternate* Frequency Compensation

Feedforward Compensation

Compensation Circuits

Notes:

- **Bandwidth and Slew Rate are proportional to $1/C_{t}$**
- **Improves rejection of power supply noise by a factor of ten.**
- **Bandwidth and Slew Rate are proportional to $1/C_{s}$**

Linear Technology

2-305
TYPICAL PERFORMANCE CHARACTERISTICS

Guaranteed Offset Error

Equivalence Input Offset Voltage (mV)

\[T_A = 25^\circ C \]

\[T_A = 108 \]

\[T_A = 308A \]

\[T_A = 108A \]

MATCHED SOURCE RESISTANCE (mΩ)

Guaranteed Drift Error

Drift Error (μV/°C)

\[-55^\circ C \leq T_A \leq 125^\circ C \]

\[T_A = 108 \]

\[T_A = 108A \]

MATCHED SOURCE RESISTANCE (mΩ)

Input Noise Voltage

Input Noise (mV/√Hz)

\[R_F = 1M \]

\[R_F = 100k \]

\[R_F = 0 \]

FREQUENCY (Hz)

Open Loop Frequency Response

Voltage Gain (dB)

\[C_1 = 3 \text{ pF} \]

\[C_1 = 3 \text{ pF} \]

\[C_2 = 30 \text{ pF} \]

\[C_2 = 100 \text{ pF} \]

\[C_3 = 100 \text{ pF} \]

\[C_3 = 30 \text{ pF} \]

FREQUENCY (Hz)

GAIN

PHASE

Large Signal Frequency Response

Output Swing (V)

\[T_A = 25^\circ C \]

\[V_S = \pm 15V \]

\[C_1 = 3 \text{ pF} \]

\[C_2 = 32 \text{ pF} \]

FREQUENCY (Hz)

Voltage Follower Pulse Response

Voltage Swing (V)

\[T_A = 25^\circ C \]

\[V_S = \pm 15V \]

\[C_1 = 30 \text{ pF} \]

INPUT

OUTPUT

TIME (μs)

Voltage Gain

Voltage Gain (dB)

\[T_A = 25^\circ C \]

\[T_A = 125^\circ C \]

\[T_A = -55^\circ C \]

\[T_A = -55^\circ C \]

\[T_A = 125^\circ C \]

\[T_A = 25^\circ C \]

SUPPLY VOLTAGE (±V)

Output Swing

Output Swing (±V)

\[V_S = \pm 15V \]

\[T_A = 25^\circ C \]

\[T_A = 125^\circ C \]

\[T_A = -55^\circ C \]

\[T_A = 125^\circ C \]

OUTPUT CURRENT (±mA)

Supply Current

Supply Current (±μA)

\[T_A = 25^\circ C \]

\[T_A = 125^\circ C \]

\[T_A = -55^\circ C \]

\[T_A = -55^\circ C \]

\[T_A = 125^\circ C \]

SUPPLY VOLTAGE (±V)
TYPICAL PERFORMANCE CHARACTERISTICS

Closed Loop Output Impedance

Power Supply Rejection

TYPICAL APPLICATIONS

Low Drift Integrator With Reset

Inverting Amplifier With High Input Resistance

* Q1 and Q3 should not have internal gate-protection diodes.
Typical Applications

Amplifier for Piezoelectric Transducers

![Circuit Diagram](image)

Amplifier for Bridge Transducers

![Circuit Diagram](image)

Fast† Summing Amplifier

![Circuit Diagram](image)

Bilateral Current Source

![Circuit Diagram](image)

Sample and Hold

![Circuit Diagram](image)

Differential Input Instrumentation Amplifier

![Circuit Diagram](image)

*† In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

* Power Bandwidth: 250 Khz
 Small Signal Bandwidth: 3.5 MHz
 Slew Rate: 10V/μS

\[C5 = \frac{6 \times 10^{-3}}{R_i} \]

* Teflon, polyethylene or polycarbonate dielectric capacitor.
 Worst case drift less than 2.5 mV/sec.
APPLICATIONS INFORMATION

Input guarding
Input guarding is used to reduce surface leakage. Guarding both sides of the board is required. Bulk leakage reduction is less and depends on the guard ring width.

The guard ring is connected to a low impedance point at same potential as the sensitive input leads. Connections for various op amp configurations are shown below.

Input protection
Current is limited by R2 even when input is connected to a voltage source outside the common mode range. If one supply reverses, current is controlled by R1. These resistors do not affect normal operation.

The input resistor controls the current when the input exceeds the supply voltages, when the power for the op amp is turned off, or when the output is shorted.

Offset Voltage Test Circuit†

* RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL

† THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION WITH SUPPLY VOLTAGES EQUAL TO ±20V, R1 = R3 = 10k, R2 = 2000, AV = 100.